Model configuration and small prompt improvements #24
|
@ -13,4 +13,11 @@ WORKDIR /app
|
|||
|
||||
COPY --from=builder /build/app .
|
||||
|
||||
# Do not forget "/v1" in the end
|
||||
ENV OPENAI_API_BASE_URL="" \
|
||||
OPENAI_API_TOKEN="" \
|
||||
TELEGRAM_TOKEN="" \
|
||||
MODEL_TEXT_REQUEST="llama3.1:8b-instruct-q6_K" \
|
||||
MODEL_SUMMARIZE_REQUEST="llama3.1:8b-instruct-q6_K"
|
||||
|
||||
CMD ["/app/app"]
|
||||
|
|
|
@ -8,8 +8,10 @@
|
|||
|
||||
```shell
|
||||
docker run \
|
||||
-e OLLAMA_TOKEN=123 \
|
||||
-e OLLAMA_BASE_URL=http://ollama.localhost:11434/v1 \
|
||||
-e OPENAI_API_TOKEN=123 \
|
||||
-e OPENAI_API_BASE_URL=http://ollama.localhost:11434/v1 \
|
||||
-e TELEGRAM_TOKEN=12345 \
|
||||
-e MODEL_TEXT_REQUEST=llama3.1:8b-instruct-q6_K
|
||||
-e MODEL_TEXT_REQUEST=mistral-nemo:12b-instruct-2407-q4_K_M
|
||||
skobkin/telegram-llm-bot
|
||||
```
|
||||
|
|
17
bot/bot.go
17
bot/bot.go
|
@ -23,16 +23,23 @@ type Bot struct {
|
|||
llm *llm.LlmConnector
|
||||
extractor *extractor.Extractor
|
||||
stats *stats.Stats
|
||||
models ModelSelection
|
||||
|
||||
markdownV1Replacer *strings.Replacer
|
||||
}
|
||||
|
||||
func NewBot(api *telego.Bot, llm *llm.LlmConnector, extractor *extractor.Extractor) *Bot {
|
||||
func NewBot(
|
||||
api *telego.Bot,
|
||||
llm *llm.LlmConnector,
|
||||
extractor *extractor.Extractor,
|
||||
models ModelSelection,
|
||||
) *Bot {
|
||||
return &Bot{
|
||||
api: api,
|
||||
llm: llm,
|
||||
extractor: extractor,
|
||||
stats: stats.NewStats(),
|
||||
models: models,
|
||||
|
||||
markdownV1Replacer: strings.NewReplacer(
|
||||
// https://core.telegram.org/bots/api#markdown-style
|
||||
|
@ -122,7 +129,7 @@ func (b *Bot) inlineHandler(bot *telego.Bot, update telego.Update) {
|
|||
slog.Error("Cannot retrieve an article using extractor", "error", err)
|
||||
}
|
||||
|
||||
llmReply, err := b.llm.Summarize(article.Text, llm.ModelLlama3Uncensored )
|
||||
llmReply, err := b.llm.Summarize(article.Text, b.models.TextRequestModel)
|
||||
if err != nil {
|
||||
slog.Error("Cannot get reply from LLM connector")
|
||||
|
||||
|
@ -148,7 +155,7 @@ func (b *Bot) inlineHandler(bot *telego.Bot, update telego.Update) {
|
|||
|
||||
requestContext := createLlmRequestContextFromUpdate(update)
|
||||
|
||||
llmReply, err := b.llm.HandleSingleRequest(iq.Query, llm.ModelLlama3Uncensored, requestContext)
|
||||
llmReply, err := b.llm.HandleSingleRequest(iq.Query, b.models.TextRequestModel, requestContext)
|
||||
if err != nil {
|
||||
slog.Error("Cannot get reply from LLM connector")
|
||||
|
||||
|
@ -194,7 +201,7 @@ func (b *Bot) heyHandler(bot *telego.Bot, update telego.Update) {
|
|||
|
||||
requestContext := createLlmRequestContextFromUpdate(update)
|
||||
|
||||
llmReply, err := b.llm.HandleSingleRequest(userMessage, llm.ModelLlama3Uncensored, requestContext)
|
||||
llmReply, err := b.llm.HandleSingleRequest(userMessage, b.models.TextRequestModel, requestContext)
|
||||
if err != nil {
|
||||
slog.Error("Cannot get reply from LLM connector")
|
||||
|
||||
|
@ -259,7 +266,7 @@ func (b *Bot) summarizeHandler(bot *telego.Bot, update telego.Update) {
|
|||
slog.Error("Cannot retrieve an article using extractor", "error", err)
|
||||
}
|
||||
|
||||
llmReply, err := b.llm.Summarize(article.Text, llm.ModelMistralUncensored)
|
||||
llmReply, err := b.llm.Summarize(article.Text, b.models.SummarizeModel)
|
||||
if err != nil {
|
||||
slog.Error("Cannot get reply from LLM connector")
|
||||
|
||||
|
|
6
bot/models.go
Normal file
6
bot/models.go
Normal file
|
@ -0,0 +1,6 @@
|
|||
package bot
|
||||
|
||||
type ModelSelection struct {
|
||||
TextRequestModel string
|
||||
SummarizeModel string
|
||||
}
|
|
@ -44,11 +44,13 @@ func createLlmRequestContextFromUpdate(update telego.Update) llm.RequestContext
|
|||
}
|
||||
|
||||
if !rc.Inline {
|
||||
// TODO: implement retrieval of chat description
|
||||
chat := message.Chat
|
||||
rc.Chat = llm.ChatContext{
|
||||
Title: chat.Title,
|
||||
Description: chat.Description,
|
||||
Type: chat.Type,
|
||||
Title: chat.Title,
|
||||
// TODO: fill when ChatFullInfo retrieved
|
||||
//Description: chat.Description,
|
||||
Type: chat.Type,
|
||||
}
|
||||
}
|
||||
|
||||
|
|
50
llm/llm.go
50
llm/llm.go
|
@ -10,9 +10,6 @@ import (
|
|||
var (
|
||||
ErrLlmBackendRequestFailed = errors.New("llm back-end request failed")
|
||||
ErrNoChoices = errors.New("no choices in LLM response")
|
||||
|
||||
ModelMistralUncensored = "dolphin-mistral:7b-v2.8-q4_K_M"
|
||||
ModelLlama3Uncensored = "dolphin-llama3:8b-v2.9-q4_K_M"
|
||||
)
|
||||
|
||||
type LlmConnector struct {
|
||||
|
@ -31,12 +28,12 @@ func NewConnector(baseUrl string, token string) *LlmConnector {
|
|||
}
|
||||
|
||||
func (l *LlmConnector) HandleSingleRequest(text string, model string, requestContext RequestContext) (string, error) {
|
||||
systemPrompt := "You're a bot in the Telegram chat. " +
|
||||
"You're using a free model called \"" + model + "\". " +
|
||||
"You see only messages addressed to you using commands due to privacy settings."
|
||||
systemPrompt := "You're a bot in the Telegram chat.\n" +
|
||||
"You're using a free model called \"" + model + "\".\n" +
|
||||
"Currently you're not able to access chat history, so each message will be replied from a clean slate."
|
||||
|
||||
if !requestContext.Empty {
|
||||
systemPrompt += " " + requestContext.Prompt()
|
||||
systemPrompt += "\n" + requestContext.Prompt()
|
||||
}
|
||||
|
||||
req := openai.ChatCompletionRequest{
|
||||
|
@ -79,9 +76,10 @@ func (l *LlmConnector) Summarize(text string, model string) (string, error) {
|
|||
{
|
||||
Role: openai.ChatMessageRoleSystem,
|
||||
Content: "You're a text shortener. Give a very brief summary of the main facts " +
|
||||
"point by point. Format them as a list of bullet points. " +
|
||||
"point by point. Format them as a list of bullet points each starting with \"-\". " +
|
||||
"Avoid any commentaries and value judgement on the matter. " +
|
||||
"If possible, use the same language as the original text.",
|
||||
"If possible, respond in the same language as the original text." +
|
||||
"Do not use any non-ASCII characters.",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
@ -108,3 +106,37 @@ func (l *LlmConnector) Summarize(text string, model string) (string, error) {
|
|||
|
||||
return resp.Choices[0].Message.Content, nil
|
||||
}
|
||||
|
||||
func (l *LlmConnector) GetModels() []string {
|
||||
var result []string
|
||||
|
||||
models, err := l.client.ListModels(context.Background())
|
||||
if err != nil {
|
||||
slog.Error("llm: Model list request failed", "error", err)
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
slog.Info("Model list retrieved", "models", models)
|
||||
|
||||
for _, model := range models.Models {
|
||||
result = append(result, model.ID)
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
func (l *LlmConnector) HasModel(id string) bool {
|
||||
model, err := l.client.GetModel(context.Background(), id)
|
||||
if err != nil {
|
||||
slog.Error("llm: Model request failed", "error", err)
|
||||
}
|
||||
|
||||
slog.Debug("llm: Returned model", "model", model)
|
||||
|
||||
if model.ID != "" {
|
||||
return true
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
|
|
@ -39,15 +39,16 @@ func (c RequestContext) Prompt() string {
|
|||
prompt += "You're responding to inline query, so you're not in the chat right now. "
|
||||
}
|
||||
|
||||
prompt += "According to their profile, first name of the user who wrote you is \"" + c.User.FirstName + "\". "
|
||||
prompt += "User profile:" +
|
||||
"First name: \"" + c.User.FirstName + "\"\n"
|
||||
if c.User.Username != "" {
|
||||
prompt += "Their username is @" + c.User.Username + ". "
|
||||
prompt += "Username: @" + c.User.Username + ".\n"
|
||||
}
|
||||
if c.User.LastName != "" {
|
||||
prompt += "Their last name is \"" + c.User.LastName + "\". "
|
||||
prompt += "Last name: \"" + c.User.LastName + "\"\n"
|
||||
}
|
||||
if c.User.IsPremium {
|
||||
prompt += "They have Telegram Premium subscription. "
|
||||
prompt += "Telegram Premium subscription: active."
|
||||
}
|
||||
|
||||
return prompt
|
||||
|
|
27
main.go
27
main.go
|
@ -12,12 +12,31 @@ import (
|
|||
)
|
||||
|
||||
func main() {
|
||||
ollamaToken := os.Getenv("OLLAMA_TOKEN")
|
||||
ollamaBaseUrl := os.Getenv("OLLAMA_BASE_URL")
|
||||
apiToken := os.Getenv("OPENAI_API_TOKEN")
|
||||
apiBaseUrl := os.Getenv("OPENAI_API_BASE_URL")
|
||||
|
||||
models := bot.ModelSelection{
|
||||
TextRequestModel: os.Getenv("MODEL_TEXT_REQUEST"),
|
||||
SummarizeModel: os.Getenv("MODEL_SUMMARIZE_REQUEST"),
|
||||
}
|
||||
|
||||
slog.Info("Selected", "models", models)
|
||||
|
||||
telegramToken := os.Getenv("TELEGRAM_TOKEN")
|
||||
|
||||
llmc := llm.NewConnector(ollamaBaseUrl, ollamaToken)
|
||||
llmc := llm.NewConnector(apiBaseUrl, apiToken)
|
||||
|
||||
slog.Info("Checking models availability")
|
||||
|
||||
for _, model := range []string{models.TextRequestModel, models.SummarizeModel} {
|
||||
if !llmc.HasModel(model) {
|
||||
slog.Error("Model not unavailable", "model", model)
|
||||
os.Exit(1)
|
||||
}
|
||||
}
|
||||
|
||||
slog.Info("All needed models are available")
|
||||
|
||||
ext := extractor.NewExtractor()
|
||||
|
||||
telegramApi, err := tg.NewBot(telegramToken, tg.WithLogger(bot.NewLogger("telego: ")))
|
||||
|
@ -26,7 +45,7 @@ func main() {
|
|||
os.Exit(1)
|
||||
}
|
||||
|
||||
botService := bot.NewBot(telegramApi, llmc, ext)
|
||||
botService := bot.NewBot(telegramApi, llmc, ext, models)
|
||||
|
||||
err = botService.Run()
|
||||
if err != nil {
|
||||
|
|
Loading…
Reference in a new issue