44 lines
1.2 KiB
YAML
44 lines
1.2 KiB
YAML
# Configurations for hardware-accelerated machine learning
|
|
|
|
# If using Unraid or another platform that doesn't allow multiple Compose files,
|
|
# you can inline the config for a backend by copying its contents
|
|
# into the immich-machine-learning service in the docker-compose.yml file.
|
|
|
|
# See https://immich.app/docs/features/ml-hardware-acceleration for info on usage.
|
|
|
|
services:
|
|
armnn:
|
|
devices:
|
|
- /dev/mali0:/dev/mali0
|
|
volumes:
|
|
- /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro # Mali firmware for your chipset (not always required depending on the driver)
|
|
- /usr/lib/libmali.so:/usr/lib/libmali.so:ro # Mali driver for your chipset (always required)
|
|
|
|
cpu: {}
|
|
|
|
cuda:
|
|
deploy:
|
|
resources:
|
|
reservations:
|
|
devices:
|
|
- driver: nvidia
|
|
count: 1
|
|
capabilities:
|
|
- gpu
|
|
|
|
openvino:
|
|
device_cgroup_rules:
|
|
- 'c 189:* rmw'
|
|
devices:
|
|
- /dev/dri:/dev/dri
|
|
volumes:
|
|
- /dev/bus/usb:/dev/bus/usb
|
|
|
|
openvino-wsl:
|
|
devices:
|
|
- /dev/dri:/dev/dri
|
|
- /dev/dxg:/dev/dxg
|
|
volumes:
|
|
- /dev/bus/usb:/dev/bus/usb
|
|
- /usr/lib/wsl:/usr/lib/wsl
|