# Configurations for hardware-accelerated machine learning # If using Unraid or another platform that doesn't allow multiple Compose files, # you can inline the config for a backend by copying its contents # into the immich-machine-learning service in the docker-compose.yml file. # See https://immich.app/docs/features/ml-hardware-acceleration for info on usage. services: armnn: devices: - /dev/mali0:/dev/mali0 volumes: - /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro # Mali firmware for your chipset (not always required depending on the driver) - /usr/lib/libmali.so:/usr/lib/libmali.so:ro # Mali driver for your chipset (always required) cpu: {} cuda: deploy: resources: reservations: devices: - driver: nvidia count: 1 capabilities: - gpu openvino: device_cgroup_rules: - 'c 189:* rmw' devices: - /dev/dri:/dev/dri volumes: - /dev/bus/usb:/dev/bus/usb openvino-wsl: devices: - /dev/dri:/dev/dri - /dev/dxg:/dev/dxg volumes: - /dev/bus/usb:/dev/bus/usb - /usr/lib/wsl:/usr/lib/wsl